Revealing the mechanisms of epileptogenesis to design innovative treatments – what are the tools?

Holger Lerche
Dept. of Neurology and Epileptology
Hertie Institute for Clinical Brain Research
University of Tübingen

Dublin, European Forum on Epilepsy Research
26.05.2013
Perspectives for novel treatments

Two groups of epilepsy patients who are severely affected and deserve novel treatments urgently:
- patients with pharmacoresistant focal epilepsies (prototype with adequate animal models: temporal lobe epilepsy)
- patients with epileptic encephalopathies, severe epilepsies of childhood often with mental decline and other symptoms

Approaches to find novel therapies:
- understand epileptogenesis to design preventive/disease-modifying treatments
- design novel drug screening assays, two examples:
 - promoter screening of relevant genes
 - zebrafish models as screening tools
- use bioinformatics to identify novel targets
Epileptogenesis

- gene defect
- febrile seizures
 - event/trigger/condition
- stroke
- trauma
- infection
- epigenetic effects
 - inflammation
 - many unknown factors
 - epilepsy
Examples for antiepileptogenic / disease-modifying treatments

Temporal lobe (and other focal) epilepsies:
- in many animal models, knock-out or pharmacological manipulation of relevant targets is able to reverse epileptogenesis
- so far no clinical examples

Genetic epilepsies / epileptic encephalopathies:
- ketogenic diet can improve cognitive function and epilepsy in patients with glucose transporter type 1 defects
- stiripentol does not only treat seizures but seems to slow disease progression in Dravet syndrome
Inflammatory mechanisms in epileptogenesis

Molecules:
- Toll-like receptor 4
- High mobility group box 1
- Interleukins

Vezzani et al. Nat Rev Neurol 2011;7:31-40

Potential future antiepileptogenic therapy:
- anti-inflammatory agents (existing and newly developed drugs)
Epigenetic mechanisms in epileptogenesis

Potential targets:
- reelin promoter
- ion channel promoters
 - $K_{V4.2}$
 - HCN1
 - $Ca_{V3.2}$

Potential future antiepileptogenic therapy:
HDAC inhibitors (valproate, newly developed drugs)
Manipulation of gene promoters

Influencing epileptogenesis in a model of temporal lobe epilepsy:
- \(\text{Ca}_v3.2 \) calcium channels are upregulated during epileptogenesis (presumably via upregulation of a transcription factor: Egr1)
- epileptogenesis is largely reduced in \(\text{Ca}_v3.2 \) knockout mice
- finding new therapeutic strategies:
 - establish promoter-reporter assays for high-throughput screening to find compounds suppressing \(\text{Ca}_v3.2 \) expression as antiepileptogenic therapy
 - viral transfer of Egr1 suppressors

Potential future antiepileptogenic therapies:
\(\text{Ca}_v3.2 \) promoter manipulations by small molecules or viral transfer → transferable to other promoters
Example of successful causative therapy in a genetic epilepsy and movement disorder: glucose transporter type 1 defects (GLUT1)

video child

Weber et al., J Clin Invest 2008
Defective glucose transport across the blood-brain barrier – pathophysiology and therapy

Pathophysiology:
- energy deficit in the basal ganglia after physical exertion induces involuntary movements
- permanent frontal metabolic deficit induces seizures

Translation into an existing therapy
ketogenic diet: circumvent glucose as energy carrier
→ remission of seizures and episodic involuntary movements
→ dramatic improvement of cognitive function
Advantages of zebrafish as an *in vivo* drug discovery model

- Genetic, physiologic and pharmacologic homologies to humans
- High fecundity and small size
- Fast development ex utero
- Optical transparency
- Only µg amounts of compounds needed
- Compounds readily absorbed (skin, GI tract, gills)

courtesy of Alex Crawford and Camila Esguerra
Zebrafish seizure assay

control pentylenetetrazol-treated

courtesy of Alex Crawford and Camila Esguerra
High-throughput, *in vivo* CNS assays in zebrafish

Rapid development of larvae allows not only to screen for anti-seizure but also for **antiepileptogenic** activity of small molecules:
- establish chemoconvulsant models with epileptogenic phase of few days
- establish genetic models with epileptogenic/(pre-)treatment phase

Rapid knockdown of genes using antisense morpholino oligomers (MO)

courtesy of Alex Crawford and Camila Esguerra
Use of bioinformatics to search for novel candidate genes / targets (example Parkinson’s disease)

- Meta-analysis of public transcriptomics data
- Pathway visualization & enrichment
- Integration with BrainAtlas data
- Identify joint gene deregulation in aging and PD
- Phenolog candidates & GWAS SNPs
- Combine evidence to prioritize candidate genes
- Network & Machine learning analysis
- Build and interpret combinatorial marker models

Courtesy of Rudi Balling and Reinhard Schneider
Roadmap to find new therapeutic strategies: identification - selection - validation of novel target candidates

understanding epilepsy
identification & selection of targets
development and application of target modulation strategies: viral transfer, knockdown, knockout, knockin

Systems biology / bioinformatic modeling:
Cellular and molecular pathways, junction points, metabolic maps

Specific changes in genetic and acquired epileptogenesis:
- Genomics
- Epigenomics
- Metabolomics
- Transcriptomics
- Proteomics
- Inflammation

high-throughput medium-/low-throughput

rodent models
hiPSCs
human tissue

Clinical trials
Conclusion

New tools in experimental research provide a fantastic chance to be translated into novel treatment options for people with epilepsy